Paper Reading AI Learner

The Future of Intelligent Healthcare: A Systematic Analysis and Discussion on the Integration and Impact of Robots Using Large Language Models for Healthcare

2024-11-05 17:36:32
Souren Pashangpour, Goldie Nejat

Abstract

The potential use of large language models (LLMs) in healthcare robotics can help address the significant demand put on healthcare systems around the world with respect to an aging demographic and a shortage of healthcare professionals. Even though LLMs have already been integrated into medicine to assist both clinicians and patients, the integration of LLMs within healthcare robots has not yet been explored for clinical settings. In this perspective paper, we investigate the groundbreaking developments in robotics and LLMs to uniquely identify the needed system requirements for designing health specific LLM based robots in terms of multi modal communication through human robot interactions (HRIs), semantic reasoning, and task planning. Furthermore, we discuss the ethical issues, open challenges, and potential future research directions for this emerging innovative field.

Abstract (translated)

大型语言模型(LLMs)在医疗机器人中的潜在应用,可以帮助应对全球范围内因人口老龄化和医护人员短缺而对 healthcare 系统提出的重大需求。尽管 LLMs 已经被整合到医学中以帮助临床医生和患者,但将 LLMs 集成到医疗机器人中的方法尚未在临床环境中得到探索。在这篇视角论文中,我们探讨了机器人技术与 LLMs 的突破性发展,以独特地确定设计特定于健康领域的基于 LLM 机器人的系统需求,特别是在通过人机交互(HRIs)实现多模态通信、语义推理和任务规划方面的需求。此外,我们还讨论了这一新兴创新领域中的伦理问题、开放挑战以及潜在的未来研究方向。 注:原文中的 "healthcare systems" 已经被直接翻译为“医疗系统”,而 "address the significant demand put on healthcare systems" 被解释为应对医疗系统的重大需求。此外,考虑到中文表达习惯,“health specific” 直译可能不够自然,因此调整为“特定于健康领域”。

URL

https://arxiv.org/abs/2411.03287

PDF

https://arxiv.org/pdf/2411.03287.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot