Paper Reading AI Learner

Learning Lightweight Lane Detection CNNs by Self Attention Distillation

2019-08-02 12:13:34
Yuenan Hou, Zheng Ma, Chunxiao Liu, Chen Change Loy

Abstract

Training deep models for lane detection is challenging due to the very subtle and sparse supervisory signals inherent in lane annotations. Without learning from much richer context, these models often fail in challenging scenarios, e.g., severe occlusion, ambiguous lanes, and poor lighting conditions. In this paper, we present a novel knowledge distillation approach, i.e., Self Attention Distillation (SAD), which allows a model to learn from itself and gains substantial improvement without any additional supervision or labels. Specifically, we observe that attention maps extracted from a model trained to a reasonable level would encode rich contextual information. The valuable contextual information can be used as a form of 'free' supervision for further representation learning through performing topdown and layer-wise attention distillation within the network itself. SAD can be easily incorporated in any feedforward convolutional neural networks (CNN) and does not increase the inference time. We validate SAD on three popular lane detection benchmarks (TuSimple, CULane and BDD100K) using lightweight models such as ENet, ResNet-18 and ResNet-34. The lightest model, ENet-SAD, performs comparatively or even surpasses existing algorithms. Notably, ENet-SAD has 20 x fewer parameters and runs 10 x faster compared to the state-of-the-art SCNN, while still achieving compelling performance in all benchmarks. Our code is available at https://github.com/cardwing/Codes-for-Lane-Detection.

Abstract (translated)

URL

https://arxiv.org/abs/1908.00821

PDF

https://arxiv.org/pdf/1908.00821.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot