Paper Reading AI Learner

Robust and Transferable Backdoor Attacks Against Deep Image Compression With Selective Frequency Prior

2024-12-02 15:58:40
Yi Yu, Yufei Wang, Wenhan Yang, Lanqing Guo, Shijian Lu, Ling-Yu Duan, Yap-Peng Tan, Alex C. Kot

Abstract

Recent advancements in deep learning-based compression techniques have surpassed traditional methods. However, deep neural networks remain vulnerable to backdoor attacks, where pre-defined triggers induce malicious behaviors. This paper introduces a novel frequency-based trigger injection model for launching backdoor attacks with multiple triggers on learned image compression models. Inspired by the widely used DCT in compression codecs, triggers are embedded in the DCT domain. We design attack objectives tailored to diverse scenarios, including: 1) degrading compression quality in terms of bit-rate and reconstruction accuracy; 2) targeting task-driven measures like face recognition and semantic segmentation. To improve training efficiency, we propose a dynamic loss function that balances loss terms with fewer hyper-parameters, optimizing attack objectives effectively. For advanced scenarios, we evaluate the attack's resistance to defensive preprocessing and propose a two-stage training schedule with robust frequency selection to enhance resilience. To improve cross-model and cross-domain transferability for downstream tasks, we adjust the classification boundary in the attack loss during training. Experiments show that our trigger injection models, combined with minor modifications to encoder parameters, successfully inject multiple backdoors and their triggers into a single compression model, demonstrating strong performance and versatility. (*Due to the notification of arXiv "The Abstract field cannot be longer than 1,920 characters", the appeared Abstract is shortened. For the full Abstract, please download the Article.)

Abstract (translated)

URL

https://arxiv.org/abs/2412.01646

PDF

https://arxiv.org/pdf/2412.01646.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot