Paper Reading AI Learner

Defending Against Adversarial Iris Examples Using Wavelet Decomposition

2019-08-08 17:08:25
Sobhan Soleymani, Ali Dabouei, Jeremy Dawson, Nasser M. Nasrabadi

Abstract

Deep neural networks have presented impressive performance in biometric applications. However, their performance is highly at risk when facing carefully crafted input samples known as adversarial examples. In this paper, we present three defense strategies to detect adversarial iris examples. These defense strategies are based on wavelet domain denoising of the input examples by investigating each wavelet sub-band and removing the sub-bands that are most affected by the adversary. The first proposed defense strategy reconstructs multiple denoised versions of the input example through manipulating the mid- and high-frequency components of the wavelet domain representation of the input example and makes a decision upon the classification result of the majority of the denoised examples. The second and third proposed defense strategies aim to denoise each wavelet domain sub-band and determine the sub-bands that are most likely affected by the adversary using the reconstruction error computed for each sub-band. We test the performance of the proposed defense strategies against several attack scenarios and compare the results with five state of the art defense strategies.

Abstract (translated)

URL

https://arxiv.org/abs/1908.03176

PDF

https://arxiv.org/pdf/1908.03176.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot