Paper Reading AI Learner

Automated Brain Tumour Segmentation Using Deep Fully Convolutional Residual Networks

2019-08-12 16:58:50
Indrajit Mazumdar

Abstract

Automated brain tumour segmentation has the potential of making a massive improvement in disease diagnosis, surgery, monitoring and surveillance. However, this task is extremely challenging. Here, we describe our automated segmentation method using 2D CNNs that are based on U-Net. To deal with class imbalance effectively, we have formulated a weighted Dice loss function. We found that increasing the depth of the 'U' shape beyond a certain level results in a decrease in performance, so it is essential to choose an optimum depth. We also found that 3D contextual information cannot be captured by a single 2D network that is trained with patches extracted from multiple views whereas an ensemble of three 2D networks trained in multiple views can effectively capture the information and deliver much better performance. Our method obtained Dice scores of 0.79 for enhancing tumour, 0.90 for whole tumour, and 0.82 for tumour core on the BraTS 2018 validation set and its performance is comparable to the state-of-the-art methods.

Abstract (translated)

URL

https://arxiv.org/abs/1908.04250

PDF

https://arxiv.org/pdf/1908.04250.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot