Paper Reading AI Learner

IUST_PersonReId: A New Domain in Person Re-Identification Datasets

2024-12-25 11:17:43
Alireza Sedighi Moghaddam, Fatemeh Anvari, Mohammadjavad Mirshekari Haghighi, Mohammadali Fakhari, Mohammad Reza Mohammadi

Abstract

Person re-identification (ReID) models often struggle to generalize across diverse cultural contexts, particularly in Islamic regions like Iran, where modest clothing styles are prevalent. Existing datasets predominantly feature Western and East Asian fashion, limiting their applicability in these settings. To address this gap, we introduce IUST_PersonReId, a dataset designed to reflect the unique challenges of ReID in new cultural environments, emphasizing modest attire and diverse scenarios from Iran, including markets, campuses, and mosques. Experiments on IUST_PersonReId with state-of-the-art models, such as Solider and CLIP-ReID, reveal significant performance drops compared to benchmarks like Market1501 and MSMT17, highlighting the challenges posed by occlusion and limited distinctive features. Sequence-based evaluations show improvements by leveraging temporal context, emphasizing the dataset's potential for advancing culturally sensitive and robust ReID systems. IUST_PersonReId offers a critical resource for addressing fairness and bias in ReID research globally. The dataset is publicly available at this https URL.

Abstract (translated)

人员重新识别(ReID)模型在面对不同的文化环境时经常难以泛化,尤其是在伊朗这样的伊斯兰地区,那里的服装风格通常遵循传统的保守着装规范。现有的数据集主要以西方和东亚的时尚为主,这限制了它们在这些特定场景下的适用性。为了解决这一问题,我们引入了IUST_PersonReId数据集,该数据集旨在反映新的文化环境中人员重新识别的独特挑战,特别是伊朗的各种场合,如市场、校园和清真寺中的保守着装情况。 使用最新的Solider和CLIP-ReID模型在IUST_PersonReId上的实验结果显示,与Market1501和MSMT17这样的基准数据集相比,性能有显著下降。这揭示了遮挡(occlusion)问题以及独特特征有限带来的挑战。基于序列的评估显示通过利用时间上下文可以改善识别效果,突显该数据集在推进文化敏感性和鲁棒性人员重新识别系统方面的作用。 IUST_PersonReId为解决全球范围内人员重新识别研究中的公平性和偏见提供了关键资源,并且该数据集已在[此处](https://example.com)公开发布。

URL

https://arxiv.org/abs/2412.18874

PDF

https://arxiv.org/pdf/2412.18874.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot