Paper Reading AI Learner

Zero-Shot Crowd Behavior Recognition

2019-08-16 08:02:48
Xun Xu, Shaogang Gong, Timothy Hospedales


Understanding crowd behavior in video is challenging for computer vision. There have been increasing attempts on modeling crowded scenes by introducing ever larger property ontologies (attributes) and annotating ever larger training datasets. However, in contrast to still images, manually annotating video attributes needs to consider spatiotemporal evolution which is inherently much harder and more costly. Critically, the most interesting crowd behaviors captured in surveillance videos (e.g., street fighting, flash mobs) are either rare, thus have few examples for model training, or unseen previously. Existing crowd analysis techniques are not readily scalable to recognize novel (unseen) crowd behaviors. To address this problem, we investigate and develop methods for recognizing visual crowd behavioral attributes without any training samples, i.e., zero-shot learning crowd behavior recognition. To that end, we relax the common assumption that each individual crowd video instance is only associated with a single crowd attribute. Instead, our model learns to jointly recognize multiple crowd behavioral attributes in each video instance by exploring multiattribute cooccurrence as contextual knowledge for optimizing individual crowd attribute recognition. Joint multilabel attribute prediction in zero-shot learning is inherently nontrivial because cooccurrence statistics does not exist for unseen attributes. To solve this problem, we learn to predict cross-attribute cooccurrence from both online text corpus and multilabel annotation of videos with known attributes. Our experiments show that this approach to modeling multiattribute context not only improves zero-shot crowd behavior recognition on the WWW crowd video dataset, but also generalizes to novel behavior (violence) detection cross-domain in the Violence Flow video dataset.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot