Paper Reading AI Learner

The Meta-Representation Hypothesis

2025-01-05 09:06:17
Zhengpeng Xie, Jiahang Cao, Qiang Zhang, Jianxiong Zhang, Changwei Wang, Renjing Xu

Abstract

Humans rely on high-level meta-representations to engage in abstract reasoning. In complex cognitive tasks, these meta-representations help individuals abstract general rules from experience. However, constructing such meta-representations from high-dimensional observations remains a longstanding challenge for reinforcement learning agents. For instance, a well-trained agent often fails to generalize to even minor variations of the same task, such as changes in background color, while humans can easily handle. In this paper, we build a bridge between meta-representation and generalization, showing that generalization performance benefits from meta-representation learning. We also hypothesize that deep mutual learning (DML) among agents can help them converge to meta-representations. Empirical results provide support for our theory and hypothesis. Overall, this work provides a new perspective on the generalization of deep reinforcement learning.

Abstract (translated)

人类依赖高层次的元表示来进行抽象推理。在复杂的认知任务中,这些元表示帮助个体从经验中提炼出一般的规则。然而,从高维观察中构建这样的元表示仍然是强化学习代理面临的一个长期挑战。例如,一个经过良好训练的代理往往无法将所学的一般规则推广到同一任务中的细微变化上,比如背景颜色的变化,而人类则可以轻松应对这种变化。在这篇论文中,我们建立了一个连接元表示和泛化的桥梁,并展示了泛化性能可以从元表示学习中获益。此外,我们假设代理之间的深度互学习(DML)可以帮助它们收敛到元表示。实证结果支持了我们的理论和假设。总体而言,这项工作为深度强化学习的泛化提供了一种新的视角。

URL

https://arxiv.org/abs/2501.02481

PDF

https://arxiv.org/pdf/2501.02481.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot