Abstract
Recent advances in digital pathology have demonstrated the effectiveness of foundation models across diverse applications. In this report, we present a novel vision foundation model based on the RudolfV approach. Our model was trained on a dataset comprising 1.2 million histopathology whole slide images, collected from two medical institutions: Mayo Clinic and Charité - Universtätsmedizin Berlin. Comprehensive evaluations show that our model achieves state-of-the-art performance across twenty-one public benchmark datasets, even though it is neither the largest model by parameter count nor by training dataset size.
Abstract (translated)
最近在数字病理学领域的进展展示了基础模型在各种应用中的有效性。在这份报告中,我们提出了一种基于RudolfV方法的新型视觉基础模型。我们的模型是在一个包含120万张组织病理学全景图像的数据集上训练出来的,这些数据来自两家医疗机构:梅奥诊所和柏林夏里特大学医学院。全面的评估显示,尽管在参数数量或训练数据集规模上并非最大,但该模型在二十一个公开基准测试数据集中均达到了最先进的性能水平。
URL
https://arxiv.org/abs/2501.05409