Paper Reading AI Learner

Video Summarisation with Incident and Context Information using Generative AI

2025-01-08 18:35:48
Ulindu De Silva, Leon Fernando, Kalinga Bandara, Rashmika Nawaratne

Abstract

The proliferation of video content production has led to vast amounts of data, posing substantial challenges in terms of analysis efficiency and resource utilization. Addressing this issue calls for the development of robust video analysis tools. This paper proposes a novel approach leveraging Generative Artificial Intelligence (GenAI) to facilitate streamlined video analysis. Our tool aims to deliver tailored textual summaries of user-defined queries, offering a focused insight amidst extensive video datasets. Unlike conventional frameworks that offer generic summaries or limited action recognition, our method harnesses the power of GenAI to distil relevant information, enhancing analysis precision and efficiency. Employing YOLO-V8 for object detection and Gemini for comprehensive video and text analysis, our solution achieves heightened contextual accuracy. By combining YOLO with Gemini, our approach furnishes textual summaries extracted from extensive CCTV footage, enabling users to swiftly navigate and verify pertinent events without the need for exhaustive manual review. The quantitative evaluation revealed a similarity of 72.8%, while the qualitative assessment rated an accuracy of 85%, demonstrating the capability of the proposed method.

Abstract (translated)

视频内容制作的激增导致了大量的数据,这对分析效率和资源利用提出了重大挑战。为解决这一问题,开发强大的视频分析工具至关重要。本文提出了一种新方法,利用生成式人工智能(Generative Artificial Intelligence, GenAI)来促进高效的视频分析流程。我们的工具旨在根据用户的自定义查询提供定制化的文本摘要,在庞大的视频数据集中提供有针对性的洞察。 与传统的框架相比,这些传统框架通常只提供通用总结或有限的动作识别,我们的方法则运用GenAI提取相关的信息,从而提高分析的准确性和效率。通过使用YOLO-V8进行目标检测和Gemini进行全面的视频及文本分析,本解决方案实现了更高的上下文准确性。结合YOLO与Gemini的能力,我们能够从大量的闭路电视(CCTV)录像中抽取文本摘要,使用户能够在无需详细人工审查的情况下快速导航并验证相关事件。 定量评估显示相似度为72.8%,而定性评估则达到了85%的准确率,这展示了所提出方法的有效能力。

URL

https://arxiv.org/abs/2501.04764

PDF

https://arxiv.org/pdf/2501.04764.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot