Paper Reading AI Learner

Robust Single Object Tracking in LiDAR Point Clouds under Adverse Weather Conditions

2025-01-13 08:44:35
Xiantong Zhao, Xiuping Liu, Shengjing Tian, Yinan Han

Abstract

3D single object tracking (3DSOT) in LiDAR point clouds is a critical task for outdoor perception, enabling real-time perception of object location, orientation, and motion. Despite the impressive performance of current 3DSOT methods, evaluating them on clean datasets inadequately reflects their comprehensive performance, as the adverse weather conditions in real-world surroundings has not been considered. One of the main obstacles is the lack of adverse weather benchmarks for the evaluation of 3DSOT. To this end, this work proposes a challenging benchmark for LiDAR-based 3DSOT in adverse weather, which comprises two synthetic datasets (KITTI-A and nuScenes-A) and one real-world dataset (CADC-SOT) spanning three weather types: rain, fog, and snow. Based on this benchmark, five representative 3D trackers from different tracking frameworks conducted robustness evaluation, resulting in significant performance degradations. This prompts the question: What are the factors that cause current advanced methods to fail on such adverse weather samples? Consequently, we explore the impacts of adverse weather and answer the above question from three perspectives: 1) target distance; 2) template shape corruption; and 3) target shape corruption. Finally, based on domain randomization and contrastive learning, we designed a dual-branch tracking framework for adverse weather, named DRCT, achieving excellent performance in benchmarks.

Abstract (translated)

基于激光雷达点云的单个物体三维跟踪(3DSOT)是室外感知的关键任务,它能够实现目标对象位置、姿态和运动的实时感知。尽管目前的3DSOT方法表现出色,但仅在清洁数据集上进行评估无法全面反映其性能,因为现实世界中的恶劣天气条件未被充分考虑。其中一个主要障碍是没有为3DSOT评估设计的恶劣天气基准测试。 为此,这项工作提出了一个具有挑战性的基于激光雷达的3DSOT恶劣天气基准测试,包括两个合成数据集(KITTI-A和nuScenes-A)以及一个真实世界的数据集(CADC-SOT),涵盖了雨、雾和雪三种类型的恶劣天气。根据这一基准,来自不同跟踪框架的五个代表性的3D追踪器进行了鲁棒性评估,结果表明性能显著下降。这引发了问题:是什么因素导致当前先进的方法在这种恶劣天气样本上表现不佳?因此,我们从三个方面探讨了恶劣天气的影响,并回答了上述问题:1)目标距离;2)模板形状损坏;和3)目标形状损坏。 最后,在领域随机化和对比学习的基础上,我们设计了一个用于恶劣天气的双分支跟踪框架DRCT(Domain Randomization and Contrastive Learning-based Dual-branch Tracker),在基准测试中取得了卓越的成绩。

URL

https://arxiv.org/abs/2501.07133

PDF

https://arxiv.org/pdf/2501.07133.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot