Paper Reading AI Learner

Overcoming Semantic Dilution in Transformer-Based Next Frame Prediction

2025-01-28 07:12:29
Hy Nguyen, Srikanth Thudumu, Hung Du, Rajesh Vasa, Kon Mouzakis

Abstract

Next-frame prediction in videos is crucial for applications such as autonomous driving, object tracking, and motion prediction. The primary challenge in next-frame prediction lies in effectively capturing and processing both spatial and temporal information from previous video sequences. The transformer architecture, known for its prowess in handling sequence data, has made remarkable progress in this domain. However, transformer-based next-frame prediction models face notable issues: (a) The multi-head self-attention (MHSA) mechanism requires the input embedding to be split into $N$ chunks, where $N$ is the number of heads. Each segment captures only a fraction of the original embeddings information, which distorts the representation of the embedding in the latent space, resulting in a semantic dilution problem; (b) These models predict the embeddings of the next frames rather than the frames themselves, but the loss function based on the errors of the reconstructed frames, not the predicted embeddings -- this creates a discrepancy between the training objective and the model output. We propose a Semantic Concentration Multi-Head Self-Attention (SCMHSA) architecture, which effectively mitigates semantic dilution in transformer-based next-frame prediction. Additionally, we introduce a loss function that optimizes SCMHSA in the latent space, aligning the training objective more closely with the model output. Our method demonstrates superior performance compared to the original transformer-based predictors.

Abstract (translated)

视频中的下一帧预测对于自主驾驶、目标跟踪和运动预测等应用至关重要。下一帧预测的主要挑战在于有效捕捉并处理来自先前视频序列的空间和时间信息。具有处理序列数据能力的Transformer架构在这领域取得了显著进展,但基于Transformer的下一帧预测模型面临一些值得注意的问题:(a) 多头自注意力(MHSA)机制要求输入嵌入被分割为$N$个块,其中$N$是头部的数量。每个部分仅捕获原始嵌入信息的一部分,这在潜在空间中扭曲了嵌入表示,导致语义稀释问题;(b) 这些模型预测下一帧的嵌入而不是实际帧本身,但损失函数基于重构错误而非预测嵌入——这就产生了训练目标和模型输出之间的不一致。为此,我们提出了Semantic Concentration Multi-Head Self-Attention (SCMHSA)架构,该架构在基于Transformer的下一帧预测中有效地缓解了语义稀释问题。此外,我们还引入了一种优化潜在空间中的SCMHSA的损失函数,使训练目标更接近模型输出。我们的方法相较于原始的基于Transformer的预测器显示出优越的表现性能。

URL

https://arxiv.org/abs/2501.16753

PDF

https://arxiv.org/pdf/2501.16753.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot