Paper Reading AI Learner

PhysAnimator: Physics-Guided Generative Cartoon Animation

2025-01-27 22:48:36
Tianyi Xie, Yiwei Zhao, Ying Jiang, Chenfanfu Jiang

Abstract

Creating hand-drawn animation sequences is labor-intensive and demands professional expertise. We introduce PhysAnimator, a novel approach for generating physically plausible meanwhile anime-stylized animation from static anime illustrations. Our method seamlessly integrates physics-based simulations with data-driven generative models to produce dynamic and visually compelling animations. To capture the fluidity and exaggeration characteristic of anime, we perform image-space deformable body simulations on extracted mesh geometries. We enhance artistic control by introducing customizable energy strokes and incorporating rigging point support, enabling the creation of tailored animation effects such as wind interactions. Finally, we extract and warp sketches from the simulation sequence, generating a texture-agnostic representation, and employ a sketch-guided video diffusion model to synthesize high-quality animation frames. The resulting animations exhibit temporal consistency and visual plausibility, demonstrating the effectiveness of our method in creating dynamic anime-style animations.

Abstract (translated)

创作手绘动画序列是一项劳动密集型工作,需要专业的技能。我们提出了一种名为PhysAnimator的新方法,可以从静态的动漫插图生成既符合物理原理又具有动漫风格的动画。我们的方法将基于物理的仿真与数据驱动的生成模型无缝结合,以产生动态且视觉上引人注目的动画。 为了捕捉动漫中特有的流畅性和夸张效果,我们在提取出的网格几何体上执行图像空间中的可变形身体模拟。通过引入可以自定义的能量笔触和加入绑定点支持来增强艺术控制,使创作风交互等定制化的动画效果成为可能。 最后,我们从仿真序列中抽取并扭曲草图,生成一种无关纹理的表现形式,并使用引导草图的视频扩散模型合成高质量的动画帧。由此产生的动画在时间上具有一致性和视觉上的真实性,证明了我们的方法在创造动态动漫风格动画方面的有效性。

URL

https://arxiv.org/abs/2501.16550

PDF

https://arxiv.org/pdf/2501.16550.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot