Paper Reading AI Learner

Inverse Bridge Matching Distillation

2025-02-03 13:56:03
Nikita Gushchin, David Li, Daniil Selikhanovych, Evgeny Burnaev, Dmitry Baranchuk, Alexander Korotin

Abstract

Learning diffusion bridge models is easy; making them fast and practical is an art. Diffusion bridge models (DBMs) are a promising extension of diffusion models for applications in image-to-image translation. However, like many modern diffusion and flow models, DBMs suffer from the problem of slow inference. To address it, we propose a novel distillation technique based on the inverse bridge matching formulation and derive the tractable objective to solve it in practice. Unlike previously developed DBM distillation techniques, the proposed method can distill both conditional and unconditional types of DBMs, distill models in a one-step generator, and use only the corrupted images for training. We evaluate our approach for both conditional and unconditional types of bridge matching on a wide set of setups, including super-resolution, JPEG restoration, sketch-to-image, and other tasks, and show that our distillation technique allows us to accelerate the inference of DBMs from 4x to 100x and even provide better generation quality than used teacher model depending on particular setup.

Abstract (translated)

学习扩散桥模型(Diffusion Bridge Models,DBMs)很简单;但要使它们变得快速且实用则是一门艺术。扩散桥模型是扩散模型在图像到图像转换应用中的一个有前景的扩展。然而,与许多现代的扩散和流模型一样,DBMs面临着推理速度慢的问题。为了解决这个问题,我们提出了一种基于逆向桥匹配公式的新颖蒸馏技术,并推导出实用的目标函数来解决这一问题。 不同于之前开发的DBM蒸馏技术,我们的方法可以同时对条件性和非条件性的DBMs进行蒸馏,在一步生成器中训练模型,并仅使用损坏的图像进行训练。我们在一系列广泛的设置上评估了我们这种方法在条件性和非条件性桥匹配上的表现,包括超分辨率、JPEG恢复、草图到图像转换以及其他任务,结果显示我们的蒸馏技术可以将DBM的推理速度提高4倍至100倍不等,并且在某些情况下甚至能提供比原教师模型更好的生成质量。

URL

https://arxiv.org/abs/2502.01362

PDF

https://arxiv.org/pdf/2502.01362.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot