Paper Reading AI Learner

Fast and Efficient Model for Real-Time Tiger Detection In The Wild

2019-09-03 12:47:23
Orest Kupyn, Dmitry Pranchuk


The highest accuracy object detectors to date are based either on a two-stage approach such as Fast R-CNN or one-stage detectors such as Retina-Net or SSD with deep and complex backbones. In this paper we present TigerNet - simple yet efficient FPN based network architecture for Amur Tiger Detection in the wild. The model has 600k parameters, requires 0.071 GFLOPs per image and can run on the edge devices (smart cameras) in near real time. In addition, we introduce a two-stage semi-supervised learning via pseudo-labelling learning approach to distill the knowledge from the larger networks. For ATRW-ICCV 2019 tiger detection sub-challenge, based on public leaderboard score, our approach shows superior performance in comparison to other methods.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot