Paper Reading AI Learner

PalimpChat: Declarative and Interactive AI analytics

2025-02-05 17:06:59
Chunwei Liu, Gerardo Vitagliano, Brandon Rose, Matt Prinz, David Andrew Samson, Michael Cafarella

Abstract

Thanks to the advances in generative architectures and large language models, data scientists can now code pipelines of machine-learning operations to process large collections of unstructured data. Recent progress has seen the rise of declarative AI frameworks (e.g., Palimpzest, Lotus, and DocETL) to build optimized and increasingly complex pipelines, but these systems often remain accessible only to expert programmers. In this demonstration, we present PalimpChat, a chat-based interface to Palimpzest that bridges this gap by letting users create and run sophisticated AI pipelines through natural language alone. By integrating Archytas, a ReAct-based reasoning agent, and Palimpzest's suite of relational and LLM-based operators, PalimpChat provides a practical illustration of how a chat interface can make declarative AI frameworks truly accessible to non-experts. Our demo system is publicly available online. At SIGMOD'25, participants can explore three real-world scenarios--scientific discovery, legal discovery, and real estate search--or apply PalimpChat to their own datasets. In this paper, we focus on how PalimpChat, supported by the Palimpzest optimizer, simplifies complex AI workflows such as extracting and analyzing biomedical data.

Abstract (translated)

感谢生成架构和大型语言模型的进步,数据科学家现在可以编写用于处理大量非结构化数据的机器学习操作流水线。近期的发展见证了声明式人工智能框架(例如Palimpzest、Lotus和DocETL)的兴起,这些框架能够构建优化且日趋复杂的流水线,但这类系统通常仅对专家程序员开放。在此演示中,我们介绍了一种名为PalimpChat的新聊天界面,该界面基于Palimpzest并提供了一个桥梁,使用户通过自然语言就能创建和运行复杂的人工智能管道,从而弥合了这一差距。通过结合基于ReAct的推理代理Archytas与Palimpzest的关系运算符及大型语言模型(LLM)运算符套件,PalimpChat实际展示了聊天界面如何使得声明式AI框架对非专业人士变得真正可访问。 我们的演示系统已在网上公开可用。在SIGMOD'25会议上,参与者可以探索三个现实世界场景——科学发现、法律发现和房地产搜索——或者将PalimpChat应用到他们自己的数据集上。本文着重介绍了PalimpChat如何通过帕尔姆佩斯特优化器的支持简化复杂的人工智能工作流程,例如提取和分析生物医学数据。

URL

https://arxiv.org/abs/2502.03368

PDF

https://arxiv.org/pdf/2502.03368.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot