Abstract
During the early stages of interface design, designers need to produce multiple sketches to explore a design space. Design tools often fail to support this critical stage, because they insist on specifying more details than necessary. Although recent advances in generative AI have raised hopes of solving this issue, in practice they fail because expressing loose ideas in a prompt is impractical. In this paper, we propose a diffusion-based approach to the low-effort generation of interface sketches. It breaks new ground by allowing flexible control of the generation process via three types of inputs: A) prompts, B) wireframes, and C) visual flows. The designer can provide any combination of these as input at any level of detail, and will get a diverse gallery of low-fidelity solutions in response. The unique benefit is that large design spaces can be explored rapidly with very little effort in input-specification. We present qualitative results for various combinations of input specifications. Additionally, we demonstrate that our model aligns more accurately with these specifications than other models.
Abstract (translated)
在界面设计的早期阶段,设计师需要制作多张草图以探索设计方案。然而,现有的设计工具往往无法有效支持这一关键步骤,因为它们要求指定过多不必要的细节。尽管最近生成式人工智能技术的进步带来了解决这一问题的希望,但实际上这些方法由于难以通过提示表达松散的想法而未能成功。在本文中,我们提出了一种基于扩散模型的方法来快速生成界面草图,该方法通过允许设计师以三种类型输入的任意组合进行灵活控制来创新性地解决了这个问题:A)描述性的文字提示、B)线框图和C)视觉流程图。设计师可以在任意详细程度上提供这些输入,并将获得一系列多样化的低保真度解决方案作为回应。 这种方法的独特优势在于,它能够以极小的输入指定量快速探索大规模的设计空间。我们展示了各种不同的输入组合所得到的结果,并且证明我们的模型在与特定设计规范的一致性方面优于其他现有模型。
URL
https://arxiv.org/abs/2502.03330