Paper Reading AI Learner

Blind Visible Watermark Removal with Morphological Dilation

2025-02-04 19:36:35
Preston K. Robinette, Taylor T. Johnson

Abstract

Visible watermarks pose significant challenges for image restoration techniques, especially when the target background is unknown. Toward this end, we present MorphoMod, a novel method for automated visible watermark removal that operates in a blind setting -- without requiring target images. Unlike existing methods, MorphoMod effectively removes opaque and transparent watermarks while preserving semantic content, making it well-suited for real-world applications. Evaluations on benchmark datasets, including the Colored Large-scale Watermark Dataset (CLWD), LOGO-series, and the newly introduced Alpha1 datasets, demonstrate that MorphoMod achieves up to a 50.8% improvement in watermark removal effectiveness compared to state-of-the-art methods. Ablation studies highlight the impact of prompts used for inpainting, pre-removal filling strategies, and inpainting model performance on watermark removal. Additionally, a case study on steganographic disorientation reveals broader applications for watermark removal in disrupting high-level hidden messages. MorphoMod offers a robust, adaptable solution for watermark removal and opens avenues for further advancements in image restoration and adversarial manipulation.

Abstract (translated)

可见水印对图像恢复技术构成了重大挑战,尤其是在目标背景未知的情况下。为此,我们提出了MorphoMod,这是一种新颖的自动化去除可见水印的方法,在盲处理环境下工作——无需提供目标图片。与现有方法不同的是,MorphoMod能够有效移除不透明和半透明的水印,并且在保留语义内容的同时进行操作,使其非常适合现实世界的应用。 在包括Colored Large-scale Watermark Dataset (CLWD),LOGO系列以及新引入的Alpha1数据集在内的基准数据集上进行评估显示,MorphoMod相比最先进的方法,在水印去除效果方面提高了高达50.8%。消融研究表明了用于修复过程中的提示、预移除填充策略和修复模型性能对水印去除的影响。此外,一项关于隐写术定向的研究案例揭示了水印去除在干扰高级隐藏信息方面的更广泛应用。 MorphoMod为水印去除提供了一种稳健且适应性强的解决方案,并开启了图像恢复及对抗性操作领域进一步发展的新途径。

URL

https://arxiv.org/abs/2502.02676

PDF

https://arxiv.org/pdf/2502.02676.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot