Paper Reading AI Learner

Ethical Considerations for the Military Use of Artificial Intelligence in Visual Reconnaissance

2025-02-05 17:16:39
Mathias Anneken, Nadia Burkart, Fabian Jeschke, Achim Kuwertz-Wolf, Almuth Mueller, Arne Schumann, Michael Teutsch

Abstract

This white paper underscores the critical importance of responsibly deploying Artificial Intelligence (AI) in military contexts, emphasizing a commitment to ethical and legal standards. The evolving role of AI in the military goes beyond mere technical applications, necessitating a framework grounded in ethical principles. The discussion within the paper delves into ethical AI principles, particularly focusing on the Fairness, Accountability, Transparency, and Ethics (FATE) guidelines. Noteworthy considerations encompass transparency, justice, non-maleficence, and responsibility. Importantly, the paper extends its examination to military-specific ethical considerations, drawing insights from the Just War theory and principles established by prominent entities. In addition to the identified principles, the paper introduces further ethical considerations specifically tailored for military AI applications. These include traceability, proportionality, governability, responsibility, and reliability. The application of these ethical principles is discussed on the basis of three use cases in the domains of sea, air, and land. Methods of automated sensor data analysis, eXplainable AI (XAI), and intuitive user experience are utilized to specify the use cases close to real-world scenarios. This comprehensive approach to ethical considerations in military AI reflects a commitment to aligning technological advancements with established ethical frameworks. It recognizes the need for a balance between leveraging AI's potential benefits in military operations while upholding moral and legal standards. The inclusion of these ethical principles serves as a foundation for responsible and accountable use of AI in the complex and dynamic landscape of military scenarios.

Abstract (translated)

这份白皮书强调了在军事环境中负责任地部署人工智能(AI)的至关重要性,尤其重视遵守伦理和法律标准。随着人工智能在军事领域的作用不断演变,它已超越简单的技术应用层面,需要建立一个以道德原则为基础的框架。白皮书中讨论的内容深入探讨了与伦理相关的AI原则,并特别关注公平性、责任、透明度和伦理(FATE)准则。值得注意的是,这些考虑因素包括透明度、公正、不造成伤害以及责任感。此外,该文件还扩展到军事领域特有的道德考量,从正义战争理论及其原则中汲取洞见。 除已确立的原则外,白皮书进一步提出了针对军事AI应用的特定伦理考量。这其中包括可追溯性、比例原则、可治理性、责任和可靠性等。这些伦理原则的应用依据海陆空三大领域的三个实际案例进行了讨论,并采用了自动化传感器数据分析、解释型人工智能(XAI)以及直观用户体验的方法来具体说明这些案例,使其更加贴近现实世界的情景。 这种对军事AI伦理考量的全面方法体现了将技术进步与既定道德框架相结合的承诺。它承认需要在利用AI为军事行动带来的潜在利益和坚持道德及法律标准之间取得平衡。引入这些伦理原则是为了确保在复杂多变的军事场景中负责任且有问责地使用人工智能的基础。

URL

https://arxiv.org/abs/2502.03376

PDF

https://arxiv.org/pdf/2502.03376.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot