Paper Reading AI Learner

EleAtt-RNN: Adding Attentiveness to Neurons in Recurrent Neural Networks

2019-09-03 08:15:09
Pengfei Zhang, Jianru Xue, Cuiling Lan, Wenjun Zeng, Zhanning Gao, Nanning Zheng

Abstract

Recurrent neural networks (RNNs) are capable of modeling temporal dependencies of complex sequential data. In general, current available structures of RNNs tend to concentrate on controlling the contributions of current and previous information. However, the exploration of different importance levels of different elements within an input vector is always ignored. We propose a simple yet effective Element-wise-Attention Gate (EleAttG), which can be easily added to an RNN block (e.g. all RNN neurons in an RNN layer), to empower the RNN neurons to have attentiveness capability. For an RNN block, an EleAttG is used for adaptively modulating the input by assigning different levels of importance, i.e., attention, to each element/dimension of the input. We refer to an RNN block equipped with an EleAttG as an EleAtt-RNN block. Instead of modulating the input as a whole, the EleAttG modulates the input at fine granularity, i.e., element-wise, and the modulation is content adaptive. The proposed EleAttG, as an additional fundamental unit, is general and can be applied to any RNN structures, e.g., standard RNN, Long Short-Term Memory (LSTM), or Gated Recurrent Unit (GRU). We demonstrate the effectiveness of the proposed EleAtt-RNN by applying it to different tasks including the action recognition, from both skeleton-based data and RGB videos, gesture recognition, and sequential MNIST classification. Experiments show that adding attentiveness through EleAttGs to RNN blocks significantly improves the power of RNNs.

Abstract (translated)

URL

https://arxiv.org/abs/1909.01939

PDF

https://arxiv.org/pdf/1909.01939.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot