Paper Reading AI Learner

Extraction multi-'etiquettes de relations en utilisant des couches de Transformer

2025-02-21 17:42:51
Ngoc Luyen Le, Gildas Tagny Ngomp\'e

Abstract

In this article, we present the BTransformer18 model, a deep learning architecture designed for multi-label relation extraction in French texts. Our approach combines the contextual representation capabilities of pre-trained language models from the BERT family - such as BERT, RoBERTa, and their French counterparts CamemBERT and FlauBERT - with the power of Transformer encoders to capture long-term dependencies between tokens. Experiments conducted on the dataset from the TextMine'25 challenge show that our model achieves superior performance, particularly when using CamemBERT-Large, with a macro F1 score of 0.654, surpassing the results obtained with FlauBERT-Large. These results demonstrate the effectiveness of our approach for the automatic extraction of complex relations in intelligence reports.

Abstract (translated)

在这篇文章中,我们介绍了BTransformer18模型,这是一种专为从法语文本中提取多标签关系而设计的深度学习架构。我们的方法结合了来自BERT家族(如BERT、RoBERTa及其法国版本CamemBERT和FlauBERT)的预训练语言模型的上下文表示能力,以及变压器编码器捕捉令牌之间长期依赖性的能力。在TextMine'25挑战赛的数据集上进行的实验表明,使用CamemBERT-Large时,我们的模型取得了优异的成绩,宏F1得分为0.654,超过了FlauBERT-Large的结果。这些结果证明了我们方法在智能报告中自动提取复杂关系方面的有效性。

URL

https://arxiv.org/abs/2502.15619

PDF

https://arxiv.org/pdf/2502.15619.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot