Paper Reading AI Learner

Few-Shot, No Problem: Descriptive Continual Relation Extraction

2025-02-27 23:44:30
Nguyen Xuan Thanh, Anh Duc Le, Quyen Tran, Thanh-Thien Le, Linh Ngo Van, Thien Huu Nguyen

Abstract

Few-shot Continual Relation Extraction is a crucial challenge for enabling AI systems to identify and adapt to evolving relationships in dynamic real-world domains. Traditional memory-based approaches often overfit to limited samples, failing to reinforce old knowledge, with the scarcity of data in few-shot scenarios further exacerbating these issues by hindering effective data augmentation in the latent space. In this paper, we propose a novel retrieval-based solution, starting with a large language model to generate descriptions for each relation. From these descriptions, we introduce a bi-encoder retrieval training paradigm to enrich both sample and class representation learning. Leveraging these enhanced representations, we design a retrieval-based prediction method where each sample "retrieves" the best fitting relation via a reciprocal rank fusion score that integrates both relation description vectors and class prototypes. Extensive experiments on multiple datasets demonstrate that our method significantly advances the state-of-the-art by maintaining robust performance across sequential tasks, effectively addressing catastrophic forgetting.

Abstract (translated)

少量样本下的持续关系抽取(Few-shot Continual Relation Extraction)是使AI系统能够识别并适应动态现实世界领域中不断变化的关系的关键挑战。传统的基于记忆的方法通常会过度拟合于有限的样本,无法强化旧知识,在少量样本场景中数据稀疏性进一步加剧了这些问题,阻碍了潜在空间中的有效数据增强。 在本文中,我们提出了一种新颖的检索解决方案,首先使用大型语言模型生成每个关系的描述。从这些描述出发,我们引入了一个双向编码器检索训练范式,以丰富样例和类表示学习。利用这些增强后的表示形式,我们设计了一种基于检索的预测方法,其中每个样本通过整合关系描述向量和类原型的互反秩融合分数来“检索”最合适的关联。 在多个数据集上的广泛实验表明,我们的方法显著提升了现有技术,在连续任务中保持了强大的性能,并有效解决了灾难性遗忘问题。

URL

https://arxiv.org/abs/2502.20596

PDF

https://arxiv.org/pdf/2502.20596.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot