Paper Reading AI Learner

3D Ken Burns Effect from a Single Image

2019-09-12 06:55:07
Simon Niklaus, Long Mai, Jimei Yang, Feng Liu

Abstract

The Ken Burns effect allows animating still images with a virtual camera scan and zoom. Adding parallax, which results in the 3D Ken Burns effect, enables significantly more compelling results. Creating such effects manually is time-consuming and demands sophisticated editing skills. Existing automatic methods, however, require multiple input images from varying viewpoints. In this paper, we introduce a framework that synthesizes the 3D Ken Burns effect from a single image, supporting both a fully automatic mode and an interactive mode with the user controlling the camera. Our framework first leverages a depth prediction pipeline, which estimates scene depth that is suitable for view synthesis tasks. To address the limitations of existing depth estimation methods such as geometric distortions, semantic distortions, and inaccurate depth boundaries, we develop a semantic-aware neural network for depth prediction, couple its estimate with a segmentation-based depth adjustment process, and employ a refinement neural network that facilitates accurate depth predictions at object boundaries. According to this depth estimate, our framework then maps the input image to a point cloud and synthesizes the resulting video frames by rendering the point cloud from the corresponding camera positions. To address disocclusions while maintaining geometrically and temporally coherent synthesis results, we utilize context-aware color- and depth-inpainting to fill in the missing information in the extreme views of the camera path, thus extending the scene geometry of the point cloud. Experiments with a wide variety of image content show that our method enables realistic synthesis results. Our study demonstrates that our system allows users to achieve better results while requiring little effort compared to existing solutions for the 3D Ken Burns effect creation.

Abstract (translated)

URL

https://arxiv.org/abs/1909.05483

PDF

https://arxiv.org/pdf/1909.05483.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot