Paper Reading AI Learner

Image inpainting: A review

2019-09-13 18:33:38
Omar Elharrouss, Noor Almaadeed, Somaya Al-Maadeed, Younes Akbari

Abstract

Although image inpainting, or the art of repairing the old and deteriorated images, has been around for many years, it has gained even more popularity because of the recent development in image processing techniques. With the improvement of image processing tools and the flexibility of digital image editing, automatic image inpainting has found important applications in computer vision and has also become an important and challenging topic of research in image processing. This paper is a brief review of the existing image inpainting approaches we first present a global vision on the existing methods for image inpainting. We attempt to collect most of the existing approaches and classify them into three categories, namely, sequential-based, CNN-based and GAN-based methods. In addition, for each category, a list of methods for the different types of distortion on the images is presented. Furthermore, collect a list of the available datasets and discuss these in our paper. This is a contribution for digital image inpainting researchers trying to look for the available datasets because there is a lack of datasets available for image inpainting. As the final step in this overview, we present the results of real evaluations of the three categories of image inpainting methods performed on the datasets used, for the different types of image distortion. In the end, we also present the evaluations metrics and discuss the performance of these methods in terms of these metrics. This overview can be used as a reference for image inpainting researchers, and it can also facilitate the comparison of the methods as well as the datasets used. The main contribution of this paper is the presentation of the three categories of image inpainting methods along with a list of available datasets that the researchers can use to evaluate their proposed methodology against.

Abstract (translated)

URL

https://arxiv.org/abs/1909.06399

PDF

https://arxiv.org/pdf/1909.06399.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot