Paper Reading AI Learner

Adaptive Dynamic Programming for Model-free Tracking of Trajectories with Time-varying Parameters

2019-09-16 14:37:31
Florian Köpf, Simon Ramsteiner, Michael Flad, Sören Hohmann

Abstract

In order to autonomously learn to control unknown systems optimally w.r.t. an objective function, Adaptive Dynamic Programming (ADP) is well-suited to adapt controllers based on experience from interaction with the system. In recent years, many researchers focused on the tracking case, where the aim is to follow a desired trajectory. So far, ADP tracking controllers assume that the reference trajectory follows time-invariant exo-system dynamics-an assumption that does not hold for many applications. In order to overcome this limitation, we propose a new Q-function which explicitly incorporates a parametrized approximation of the reference trajectory. This allows to learn to track a general class of trajectories by means of ADP. Once our Q-function has been learned, the associated controller copes with time-varying reference trajectories without need of further training and independent of exo-system dynamics. After proposing our general model-free off-policy tracking method, we provide analysis of the important special case of linear quadratic tracking. We conclude our paper with an example which demonstrates that our new method successfully learns the optimal tracking controller and outperforms existing approaches in terms of tracking error and cost.

Abstract (translated)

URL

https://arxiv.org/abs/1909.07239

PDF

https://arxiv.org/pdf/1909.07239.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot