Paper Reading AI Learner

Weak Edge Identification Nets for Ocean Front Detection

2019-09-17 14:10:45
Qingyang Li, Guoqiang Zhong, Cui Xie

Abstract

The ocean front has an important impact in many areas, it is meaningful to obtain accurate ocean front positioning, therefore, ocean front detection is a very important task. However, the traditional edge detection algorithm does not detect the weak edge information of the ocean front very well. In response to this problem, we collected relevant ocean front gradient images and found relevant experts to calibrate the ocean front data to obtain groundtruth, and proposed a weak edge identification nets(WEIN) for ocean front detection. Whether it is qualitative or quantitative, our methods perform best. The method uses a welltrained deep learning model to accurately extract the ocean front from the ocean front gradient image. The detection network is divided into multiple stages, and the final output is a multi-stage output image fusion. The method uses the stochastic gradient descent and the correlation loss function to obtain a good ocean front image output.

Abstract (translated)

URL

https://arxiv.org/abs/1909.07827

PDF

https://arxiv.org/pdf/1909.07827


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot