Paper Reading AI Learner

CDER: Collaborative Evidence Retrieval for Document-level Relation Extraction

2025-04-09 02:10:21
Khai Phan Tran, Xue Li

Abstract

Document-level Relation Extraction (DocRE) involves identifying relations between entities across multiple sentences in a document. Evidence sentences, crucial for precise entity pair relationships identification, enhance focus on essential text segments, improving DocRE performance. However, existing evidence retrieval systems often overlook the collaborative nature among semantically similar entity pairs in the same document, hindering the effectiveness of the evidence retrieval task. To address this, we propose a novel evidence retrieval framework, namely CDER. CDER employs an attentional graph-based architecture to capture collaborative patterns and incorporates a dynamic sub-structure for additional robustness in evidence retrieval. Experimental results on the benchmark DocRE dataset show that CDER not only excels in the evidence retrieval task but also enhances overall performance of existing DocRE system.

Abstract (translated)

文档级关系抽取(DocRE)涉及在文档的多句话中识别实体之间的关系。证据句子对于精确识别实体对的关系至关重要,它们有助于聚焦于关键文本片段,从而提高文档级关系抽取的效果。然而,现有的证据检索系统常常忽视了同一文档中语义相似的实体对之间相互协作的本质特征,这限制了证据检索任务的有效性。为此,我们提出了一种新的证据检索框架,即CDER(Collaborative Evidence Retrieval)。CDER采用注意力图网络架构来捕捉协作模式,并结合动态子结构以增强证据检索的鲁棒性。在DocRE基准数据集上的实验结果表明,CDER不仅在证据检索任务中表现出色,还提升了现有文档级关系抽取系统的整体性能。

URL

https://arxiv.org/abs/2504.06529

PDF

https://arxiv.org/pdf/2504.06529.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot