Paper Reading AI Learner

Co-Writing with AI, on Human Terms: Aligning Research with User Demands Across the Writing Process

2025-04-16 21:05:46
Mohi Reza, Jeb Thomas-Mitchell, Peter Dushniku, Nathan Laundry, Joseph Jay Williams, Anastasia Kuzminykh

Abstract

As generative AI tools like ChatGPT become integral to everyday writing, critical questions arise about how to preserve writers' sense of agency and ownership when using these tools. Yet, a systematic understanding of how AI assistance affects different aspects of the writing process - and how this shapes writers' agency - remains underexplored. To address this gap, we conducted a systematic review of 109 HCI papers using the PRISMA approach. From this literature, we identify four overarching design strategies for AI writing support: structured guidance, guided exploration, active co-writing, and critical feedback - mapped across the four key cognitive processes in writing: planning, translating, reviewing, and monitoring. We complement this analysis with interviews of 15 writers across diverse domains. Our findings reveal that writers' desired levels of AI intervention vary across the writing process: content-focused writers (e.g., academics) prioritize ownership during planning, while form-focused writers (e.g., creatives) value control over translating and reviewing. Writers' preferences are also shaped by contextual goals, values, and notions of originality and authorship. By examining when ownership matters, what writers want to own, and how AI interactions shape agency, we surface both alignment and gaps between research and user needs. Our findings offer actionable design guidance for developing human-centered writing tools for co-writing with AI, on human terms.

Abstract (translated)

随着像ChatGPT这样的生成式AI工具在日常写作中变得越来越重要,关于如何在使用这些工具时保持作者的主动性和所有权的问题也愈发关键。然而,系统性地理解AI辅助对写作过程中各个方面的具体影响——以及这对写作者主动性的影响——仍然缺乏深入的研究。为了解决这一缺口,我们采用PRISMA方法审查了109篇人机交互(HCI)论文,并从中归纳出了四种关于AI写作支持的总体设计策略:结构化指导、引导性探索、积极合作写作和批判性反馈——这些策略涵盖了写作过程中四个关键的认知过程:计划、转换、回顾与监控。此外,我们还通过采访来自不同领域的15位写作者来补充这一分析。 我们的研究发现显示,在整个写作流程中,作家对AI介入的期望程度各不相同:内容导向型写作者(如学者)在规划阶段更注重所有权;而形式导向型写作者(如创意工作者)则在意翻译和回顾过程中的控制权。此外,写作者的选择还受到具体目标、价值观以及关于原创性和作者身份概念的影响。 通过考察何时拥有权重要,在什么方面作家想要掌控,以及AI互动如何影响主动性,我们揭示了研究需求与实际用户需求之间既有契合点也有差距的地方。这些发现为开发以人为中心的写作工具——以便人们在合作使用AI时能够保持主动控制——提供了可操作的设计指导。

URL

https://arxiv.org/abs/2504.12488

PDF

https://arxiv.org/pdf/2504.12488.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot