Paper Reading AI Learner

Are AI agents the new machine translation frontier? Challenges and opportunities of single- and multi-agent systems for multilingual digital communication

2025-04-17 12:32:18
Vicent Briva-Iglesias

Abstract

The rapid evolution of artificial intelligence (AI) has introduced AI agents as a disruptive paradigm across various industries, yet their application in machine translation (MT) remains underexplored. This paper describes and analyses the potential of single- and multi-agent systems for MT, reflecting on how they could enhance multilingual digital communication. While single-agent systems are well-suited for simpler translation tasks, multi-agent systems, which involve multiple specialized AI agents collaborating in a structured manner, may offer a promising solution for complex scenarios requiring high accuracy, domain-specific knowledge, and contextual awareness. To demonstrate the feasibility of multi-agent workflows in MT, we are conducting a pilot study in legal MT. The study employs a multi-agent system involving four specialized AI agents for (i) translation, (ii) adequacy review, (iii) fluency review, and (iv) final editing. Our findings suggest that multi-agent systems may have the potential to significantly improve domain-adaptability and contextual awareness, with superior translation quality to traditional MT or single-agent systems. This paper also sets the stage for future research into multi-agent applications in MT, integration into professional translation workflows, and shares a demo of the system analyzed in the paper.

Abstract (translated)

人工智能(AI)的快速演化已经引入了在各个行业中具有颠覆性的代理系统,然而,它们在机器翻译(MT)领域的应用仍处于初步探索阶段。本文描述并分析了单一代理系统和多代理系统在机器翻译中的潜在作用,并探讨它们如何能够提升跨语言数字通信的能力。虽然单一代理系统适合处理较为简单的翻译任务,但涉及多个专业AI代理以结构化方式协作的多代理系统可能为需要高精度、特定领域知识及上下文理解等复杂场景提供有前景的解决方案。 为了展示在机器翻译中使用多代理工作流程的可能性,我们正在进行一项法律翻译领域的试点研究。该研究采用了一个包含四个专门化的AI代理的多代理系统:(i) 翻译;(ii) 适当性审查;(iii) 流畅度审查;以及(iv) 最终编辑。我们的发现表明,多代理系统可能在领域适应性和上下文感知方面有显著提高,并且能够提供优于传统机器翻译或单一代理系统的更高质量的翻译。 本文还为未来关于多代理技术在MT中的应用、整合到专业翻译工作流程中,以及展示论文分析的系统演示铺平了道路。

URL

https://arxiv.org/abs/2504.12891

PDF

https://arxiv.org/pdf/2504.12891.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot