Paper Reading AI Learner

Deep Local Global Refinement Network for Stent Analysis in IVOCT Images

2019-09-23 05:50:38
Yuyu Guo

Abstract

Implantation of stents into coronary arteries is a common treatment option for patients with cardiovascular disease. Assessment of safety and efficacy of the stent implantation occurs via manual visual inspection of the neointimal coverage from intravascular optical coherence tomography (IVOCT) images. However, such manual assessment requires the detection of thousands of strut points within the stent. This is a challenging, tedious, and time-consuming task because the strut points usually appear as small, irregular shaped objects with inhomogeneous textures, and are often occluded by shadows, artifacts, and vessel walls. Conventional methods based on textures, edge detection, or simple classifiers for automated detection of strut points in IVOCT images have low recall and precision as they are, unable to adequately represent the visual features of the strut point for detection. In this study, we propose a local-global refinement network to integrate local-patch content with global content for strut points detection from IVOCT images. Our method densely detects the potential strut points in local image patches and then refines them according to global appearance constraints to reduce false positives. Our experimental results on a clinical dataset of 7,000 IVOCT images demonstrated that our method outperformed the state-of-the-art methods with a recall of 0.92 and precision of 0.91 for strut points detection.

Abstract (translated)

URL

https://arxiv.org/abs/1909.10169

PDF

https://arxiv.org/pdf/1909.10169


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot