Paper Reading AI Learner

Pose Estimation for Texture-less Shiny Objects in a Single RGB Image Using Synthetic Training Data

2019-09-23 10:37:59
Chen Chen (1), Xin Jiang (1), Weiguo Zhou (1), Yun-Hui Liu (1 and 2) ((1) Harbin Institute of Technology, Shenzhen, (2) Chinese University of Hong Kong)

Abstract

In the industrial domain, the pose estimation of multiple texture-less shiny parts is a valuable but challenging task. In this particular scenario, it is impractical to utilize keypoints or other texture information because most of them are not actual features of the target but the reflections of surroundings. Moreover, the similarity of color also poses a challenge in segmentation. In this article, we propose to divide the pose estimation process into three stages: object detection, features detection and pose optimization. A convolutional neural network was utilized to perform object detection. Concerning the reliability of surface texture, we leveraged the contour information for estimating pose. Since conventional contour-based methods are inapplicable to clustered metal parts due to the difficulties in segmentation, we use the dense discrete points along the metal part edges as semantic keypoints for contour detection. Afterward, we exploit both keypoint information and CAD model to calculate the 6D pose of each object in view. A typical implementation of deep learning methods not only requires a large amount of training data, but also relies on intensive human labor for labeling the datasets. Therefore, we propose an approach to generate datasets and label them automatically. Despite not using any real-world photos for training, a series of experiments showed that the algorithm built on synthetic data perform well in the real environment.

Abstract (translated)

URL

https://arxiv.org/abs/1909.10270

PDF

https://arxiv.org/pdf/1909.10270.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot