Paper Reading AI Learner

IR-Net: Forward and Backward Information Retention for Highly Accurate Binary Neural Networks

2019-09-24 10:12:36
Haotong Qin, Ruihao Gong, Xianglong Liu, Ziran Wei, Fengwei Yu, Jingkuan Song

Abstract

Weight and activation binarization is an effective approach to deep neural network compression and can accelerate the inference by leveraging bitwise operations. Although many binarization methods have improved the accuracy of the model by minimizing the quantization error in forward propagation, there remains a noticeable performance gap between the binarized model and the full-precision one. Our empirical study indicates that the quantization brings information loss in both forward and backward propagation, which is the bottleneck of training highly accurate binary neural networks. To address these issues, we propose an Information Retention Network (IR-Net) to retain the information that consists in the forward activations and backward gradients. IR-Net mainly relies on two technical contributions: (1) Libra Parameter Binarization (Libra-PB): minimize both quantization error and information loss of parameters by balanced and standardized weights in forward propagation; (2) Error Decay Estimator (EDE): minimize the information loss of gradients by gradually approximating the sign function in backward propagation, jointly considering the updating ability and accurate gradients. Comprehensive experiments with various network structures on CIFAR-10 and ImageNet datasets manifest that the proposed IR-Net can consistently outperform state-of-the-art quantization methods.

Abstract (translated)

URL

https://arxiv.org/abs/1909.10788

PDF

https://arxiv.org/pdf/1909.10788.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot