Paper Reading AI Learner

Scalar Quantization as Sparse Least Square Optimization

2019-09-25 17:32:25
Chen Wang, Xiaomei Yang, Shaomin Fei, Kai Zhou, Xiaofeng Gong, Miao Du, Ruisen Luo

Abstract

Quantization can be used to form new vectors/matrices with shared values close to the original. In recent years, the popularity of scalar quantization for value-sharing application has been soaring as it has been found huge utilities in reducing the complexity of neural networks. Existing clustering-based quantization techniques, while being well-developed, have multiple drawbacks including the dependency of the random seed, empty or out-of-the-range clusters, and high time complexity for large number of clusters. To overcome these problems, in this paper, the problem of scalar quantization is examined from a new perspective, namely sparse least square optimization. Specifically, inspired by the property of sparse least square regression, several quantization algorithms based on $l_1$ least square are proposed. In addition, similar schemes with $l_1 + l_2$ and $l_0$ regularization are proposed. Furthermore, to compute quantization results with a given amount of values/clusters, this paper designed an iterative method and a clustering-based method, and both of them are built on sparse least square. The paper shows that the latter method is mathematically equivalent to an improved version of k-means clustering-based quantization algorithm, although the two algorithms originated from different intuitions. The algorithms proposed were tested with three types of data and their computational performances, including information loss, time consumption, and the distribution of the values of the sparse vectors, were compared and analyzed. The paper offers a new perspective to probe the area of quantization, and the algorithms proposed can outperform existing methods especially under some bit-width reducing scenarios, when the required post-quantization resolution (number of values) is not significantly lower than that of the original vector.

Abstract (translated)

URL

https://arxiv.org/abs/1803.00204

PDF

https://arxiv.org/pdf/1803.00204.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot