Paper Reading AI Learner

Rethinking Stateful Tool Use in Multi-Turn Dialogues: Benchmarks and Challenges

2025-05-19 16:36:13
Hongru Wang, Wenyu Huang, Yufei Wang, Yuanhao Xi, Jianqiao Lu, Huan Zhang, Nan Hu, Zeming Liu, Jeff Z. Pan, Kam-Fai Wong

Abstract

Existing benchmarks that assess Language Models (LMs) as Language Agents (LAs) for tool use primarily focus on stateless, single-turn interactions or partial evaluations, such as tool selection in a single turn, overlooking the inherent stateful nature of interactions in multi-turn applications. To fulfill this gap, we propose \texttt{DialogTool}, a multi-turn dialogue dataset with stateful tool interactions considering the whole life cycle of tool use, across six key tasks in three stages: 1) \textit{tool creation}; 2) \textit{tool utilization}: tool awareness, tool selection, tool execution; and 3) \textit{role-consistent response}: response generation and role play. Furthermore, we build \texttt{VirtualMobile} -- an embodied virtual mobile evaluation environment to simulate API calls and assess the robustness of the created APIs\footnote{We will use tools and APIs alternatively, there are no significant differences between them in this paper.}. Taking advantage of these artifacts, we conduct comprehensive evaluation on 13 distinct open- and closed-source LLMs and provide detailed analysis at each stage, revealing that the existing state-of-the-art LLMs still cannot perform well to use tools over long horizons.

Abstract (translated)

现有的评估语言模型(LM)作为语言代理(LA)在工具使用方面的能力的基准测试主要集中在无状态、单一回合交互或部分评估上,例如单次回合内的工具选择,忽视了多轮应用中互动固有的有状态性质。为了填补这一空白,我们提出\texttt{DialogTool},这是一个多轮对话数据集,包含了工具使用的整个生命周期中的有状态工具互动,涵盖了六个关键任务,在三个阶段内:1)\textit{工具创建}; 2) \textit{工具利用}: 工具意识、工具选择和工具执行;3) \textit{角色一致的响应}: 响应生成和角色扮演。此外,我们构建了\texttt{VirtualMobile}——一个模拟API调用并评估所创造API的鲁棒性的身临其境虚拟移动评估环境(在本文中我们将交替使用工具和API这两个术语,并且它们在此文中没有显著差异)。利用这些资源,我们在13种不同的开源和闭源大规模语言模型上进行了全面评估,并提供了每个阶段的详细分析,揭示了现有的最先进的LLM仍然无法很好地处理长时间跨度内的工具使用。

URL

https://arxiv.org/abs/2505.13328

PDF

https://arxiv.org/pdf/2505.13328.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot