Paper Reading AI Learner

Let Androids Dream of Electric Sheep: A Human-like Image Implication Understanding and Reasoning Framework

2025-05-22 17:59:53
Chenhao Zhang, Yazhe Niu

Abstract

Metaphorical comprehension in images remains a critical challenge for AI systems, as existing models struggle to grasp the nuanced cultural, emotional, and contextual implications embedded in visual content. While multimodal large language models (MLLMs) excel in basic Visual Question Answer (VQA) tasks, they struggle with a fundamental limitation on image implication tasks: contextual gaps that obscure the relationships between different visual elements and their abstract meanings. Inspired by the human cognitive process, we propose Let Androids Dream (LAD), a novel framework for image implication understanding and reasoning. LAD addresses contextual missing through the three-stage framework: (1) Perception: converting visual information into rich and multi-level textual representations, (2) Search: iteratively searching and integrating cross-domain knowledge to resolve ambiguity, and (3) Reasoning: generating context-alignment image implication via explicit reasoning. Our framework with the lightweight GPT-4o-mini model achieves SOTA performance compared to 15+ MLLMs on English image implication benchmark and a huge improvement on Chinese benchmark, performing comparable with the GPT-4o model on Multiple-Choice Question (MCQ) and outperforms 36.7% on Open-Style Question (OSQ). Additionally, our work provides new insights into how AI can more effectively interpret image implications, advancing the field of vision-language reasoning and human-AI interaction. Our project is publicly available at this https URL.

Abstract (translated)

图像中的比喻理解仍然是AI系统的重大挑战,因为现有的模型难以把握视觉内容中嵌入的细腻的文化、情感和上下文含义。尽管多模态大型语言模型(MLLMs)在基本的视觉问答(VQA)任务上表现出色,但在涉及图像内涵的任务方面仍面临一个根本性的限制:即不同视觉元素之间关系及其抽象意义所造成的上下文差距。 受人类认知过程启发,我们提出了一种新的框架——让机器人产生梦境(Let Androids Dream, LAD),旨在理解和推理图像的隐含含义。LAD通过三阶段框架解决上下文缺失的问题:(1)感知:将视觉信息转换为丰富且多层次的文本表示;(2)搜索:迭代地搜索和整合跨域知识以消除歧义;以及(3)推理:通过明确推理生成与背景相符的图像隐含含义。使用轻量级GPT-4o-mini模型,我们的框架在英语图像隐含基准测试中相较于15个以上的MLLMs达到了最先进的性能,并在中国语料库的测试中取得了巨大进步,在多项选择题(MCQ)和开放式风格问题(OSQ)上分别与GPT-4o模型表现相当并超越了后者36.7%。此外,我们的工作为AI如何更有效地解释图像隐含含义提供了新的见解,推动了视觉语言推理及人机交互领域的发展。 本项目已在公开网址上发布:[此链接](https://thishttpsURL.com/)(请将“this https URL”替换为您实际的项目地址)。

URL

https://arxiv.org/abs/2505.17019

PDF

https://arxiv.org/pdf/2505.17019.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot