Paper Reading AI Learner

Beyond Needle in the Embodied Haystack: Environment, Architecture, and Training Considerations for Long Context Reasoning

2025-05-22 17:20:38
Bosung Kim, Prithviraj Ammanabrolu

Abstract

We introduce $\infty$-THOR, a new framework for long-horizon embodied tasks that advances long-context understanding in embodied AI. $\infty$-THOR provides: (1) a generation framework for synthesizing scalable, reproducible, and unlimited long-horizon trajectories; (2) a novel embodied QA task, Needle(s) in the Embodied Haystack, where multiple scattered clues across extended trajectories test agents' long-context reasoning ability; and (3) a long-horizon dataset and benchmark suite featuring complex tasks that span hundreds of environment steps, each paired with ground-truth action sequences. To enable this capability, we explore architectural adaptations, including interleaved Goal-State-Action modeling, context extension techniques, and Context Parallelism, to equip LLM-based agents for extreme long-context reasoning and interaction. Experimental results and analyses highlight the challenges posed by our benchmark and provide insights into training strategies and model behaviors under long-horizon conditions. Our work provides a foundation for the next generation of embodied AI systems capable of robust, long-term reasoning and planning.

Abstract (translated)

我们介绍了$\infty$-THOR,这是一个新的框架,旨在处理具身任务中的长时间跨度问题,并在具身人工智能中推进长上下文理解。$\infty$-THOR提供了以下内容: 1. 一个生成框架,用于合成可扩展、可重复且无限的长时间跨度轨迹; 2. 一个新的具身问答任务,“针在具身干草堆里”,其中遍布于延长轨迹中的多个散落线索测试代理的长上下文推理能力; 3. 一套包含复杂任务的长时间跨度数据集和基准套件,每个任务跨越数百个环境步骤,并配以真实动作序列。 为了实现这一功能,我们探索了架构调整,包括交错的目标-状态-行动建模、上下文扩展技术以及上下文并行性,以便为基于大语言模型(LLM)的代理提供极端长上下文推理和交互的能力。实验结果和分析突显了我们的基准带来的挑战,并提供了关于长时间跨度条件下训练策略及模型行为的见解。 我们这项工作为下一代能够进行稳健、长期推理与规划的具身人工智能系统奠定了基础。

URL

https://arxiv.org/abs/2505.16928

PDF

https://arxiv.org/pdf/2505.16928.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot