Paper Reading AI Learner

Towards Fine-Grained Emotion Understanding via Skeleton-Based Micro-Gesture Recognition

2025-06-15 13:42:21
Hao Xu, Lechao Cheng, Yaxiong Wang, Shengeng Tang, Zhun Zhong

Abstract

We present our solution to the MiGA Challenge at IJCAI 2025, which aims to recognize micro-gestures (MGs) from skeleton sequences for the purpose of hidden emotion understanding. MGs are characterized by their subtlety, short duration, and low motion amplitude, making them particularly challenging to model and classify. We adopt PoseC3D as the baseline framework and introduce three key enhancements: (1) a topology-aware skeleton representation specifically designed for the iMiGUE dataset to better capture fine-grained motion patterns; (2) an improved temporal processing strategy that facilitates smoother and more temporally consistent motion modeling; and (3) the incorporation of semantic label embeddings as auxiliary supervision to improve the model generalization. Our method achieves a Top-1 accuracy of 67.01\% on the iMiGUE test set. As a result of these contributions, our approach ranks third on the official MiGA Challenge leaderboard. The source code is available at \href{this https URL}{this https URL\_track1}.

Abstract (translated)

我们提出了针对2025年IJCAI MiGA挑战赛的解决方案,旨在从骨骼序列中识别微手势(MGs),以理解隐藏的情绪。微手势因其细微、短暂和低幅度运动的特点而难以建模和分类。我们的方法基于PoseC3D框架,并引入了三项关键改进:(1) 一种专为iMiGUE数据集设计的拓扑感知骨骼表示,能够更好地捕捉细微的动作模式;(2) 改进的时间处理策略,有助于更平滑、时间上更加一致地建模动作;以及 (3) 引入语义标签嵌入作为辅助监督,以提高模型泛化能力。我们的方法在iMiGUE测试集上的Top-1准确率达到了67.01%。由于这些贡献,我们在官方MiGA挑战赛排行榜上排名第三。源代码可在[\href{this https URL}{此处}](\url{this https URL\_track1})获取。

URL

https://arxiv.org/abs/2506.12848

PDF

https://arxiv.org/pdf/2506.12848.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot