Paper Reading AI Learner

Essential-Web v1.0: 24T tokens of organized web data

2025-06-17 02:03:36
Essential AI, , Andrew Hojel, Michael Pust, Tim Romanski, Yash Vanjani, Ritvik Kapila, Mohit Parmar, Adarsh Chaluvaraju, Alok Tripathy, Anil Thomas, Ashish Tanwer, Darsh J Shah, Ishaan Shah, Karl Stratos, Khoi Nguyen, Kurt Smith, Michael Callahan, Peter Rushton, Philip Monk, Platon Mazarakis, Saad Jamal, Saurabh Srivastava, Somanshu Singla, Ashish Vaswani

Abstract

Data plays the most prominent role in how language models acquire skills and knowledge. The lack of massive, well-organized pre-training datasets results in costly and inaccessible data pipelines. We present Essential-Web v1.0, a 24-trillion-token dataset in which every document is annotated with a twelve-category taxonomy covering topic, format, content complexity, and quality. Taxonomy labels are produced by EAI-Distill-0.5b, a fine-tuned 0.5b-parameter model that achieves an annotator agreement within 3% of Qwen2.5-32B-Instruct. With nothing more than SQL-style filters, we obtain competitive web-curated datasets in math (-8.0% relative to SOTA), web code (+14.3%), STEM (+24.5%) and medical (+8.6%). Essential-Web v1.0 is available on HuggingFace: this https URL

Abstract (translated)

数据在语言模型获取技能和知识的过程中扮演着最重要的角色。缺乏大规模且组织良好的预训练数据集会导致成本高昂且难以访问的数据管道问题。我们推出了Essential-Web v1.0,这是一个包含24万亿个标记的大型数据集,其中每一份文档都通过一个涵盖主题、格式、内容复杂度和质量的十二类分类法进行了标注。这些分类标签是由EAI-Distill-0.5b模型生成的,这是一款经过微调的拥有0.5亿参数量的模型,其标注者一致性达到了Qwen2.5-32B-Instruct的97%水平。 通过使用类似SQL风格的过滤器,我们可以获得在数学(相对优于当前最优方法SOTA低8.0%)、网络代码(高14.3%)、STEM(高24.5%)和医学(高8.6%)领域的竞争力强的网页精选数据集。Essential-Web v1.0可以在HuggingFace上获取:[此链接](this https URL)

URL

https://arxiv.org/abs/2506.14111

PDF

https://arxiv.org/pdf/2506.14111.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot