Paper Reading AI Learner

Recognition through Reasoning: Reinforcing Image Geo-localization with Large Vision-Language Models

2025-06-17 16:07:58
Ling Li, Yao Zhou, Yuxuan Liang, Fugee Tsung, Jiaheng Wei

Abstract

Previous methods for image geo-localization have typically treated the task as either classification or retrieval, often relying on black-box decisions that lack interpretability. The rise of large vision-language models (LVLMs) has enabled a rethinking of geo-localization as a reasoning-driven task grounded in visual cues. However, two major challenges persist. On the data side, existing reasoning-focused datasets are primarily based on street-view imagery, offering limited scene diversity and constrained viewpoints. On the modeling side, current approaches predominantly rely on supervised fine-tuning, which yields only marginal improvements in reasoning capabilities. To address these challenges, we propose a novel pipeline that constructs a reasoning-oriented geo-localization dataset, MP16-Reason, using diverse social media images. We introduce GLOBE, Group-relative policy optimization for Locatability assessment and Optimized visual-clue reasoning, yielding Bi-objective geo-Enhancement for the VLM in recognition and reasoning. GLOBE incorporates task-specific rewards that jointly enhance locatability assessment, visual clue reasoning, and geolocation accuracy. Both qualitative and quantitative results demonstrate that GLOBE outperforms state-of-the-art open-source LVLMs on geo-localization tasks, particularly in diverse visual scenes, while also generating more insightful and interpretable reasoning trajectories.

Abstract (translated)

之前的图像地理定位方法通常将其视为分类或检索任务,常常依赖于缺乏可解释性的黑盒决策。随着大型视觉语言模型(LVLM)的兴起,人们开始重新思考将地理定位作为基于视觉线索的推理驱动型任务。然而,仍然存在两个主要挑战。在数据方面,现有的以推理为中心的数据集主要基于街景图像,这提供了有限的场景多样性以及受限的视角选择。在建模方面,当前的方法主要依赖于监督微调,这仅能带来有限的推理能力提升。 为了解决这些挑战,我们提出了一种新的工作流程,构建了一个侧重于推理的地理定位数据集——MP16-Reason,该数据集使用了多样化的社交媒体图像。同时,我们引入了GLOBE(基于组相对策略优化的可定位性评估和优化视觉线索推理),旨在为LVLM在识别与推理任务中的表现带来双目标增强。GLOBE整合了特定于任务的奖励机制,以共同提升可定位性评估、视觉线索推理以及地理坐标的准确性。 无论是定性的还是定量的结果都表明,GLOBE超越了现有开源LVLM模型,在多样化视觉场景下的地理定位任务中表现出色,并且生成更具有洞察力和解释性的推理路径。

URL

https://arxiv.org/abs/2506.14674

PDF

https://arxiv.org/pdf/2506.14674.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot