Paper Reading AI Learner

Active InSAR monitoring of building damage in Gaza during the Israel-Hamas War

2025-06-17 17:12:22
Corey Scher, Jamon Van Den Hoek

Abstract

Aerial bombardment of the Gaza Strip beginning October 7, 2023 is one of the most intense bombing campaigns of the twenty-first century, driving widespread urban damage. Characterizing damage over a geographically dynamic and protracted armed conflict requires active monitoring. Synthetic aperture radar (SAR) has precedence for mapping disaster-induced damage with bi-temporal methods but applications to active monitoring during sustained crises are limited. Using interferometric SAR data from Sentinel-1, we apply a long temporal-arc coherent change detection (LT-CCD) approach to track weekly damage trends over the first year of the 2023- Israel-Hamas War. We detect 92.5% of damage labels in reference data from the United Nations with a negligible (1.2%) false positive rate. The temporal fidelity of our approach reveals rapidly increasing damage during the first three months of the war focused in northern Gaza, a notable pause in damage during a temporary ceasefire, and surges of new damage as conflict hot-spots shift from north to south. Three-fifths (191,263) of all buildings are damaged or destroyed by the end of the study. With massive need for timely data on damage in armed conflict zones, our low-cost and low-latency approach enables rapid uptake of damage information at humanitarian and journalistic organizations.

Abstract (translated)

2023年10月7日开始对加沙地带的空中轰炸是二十一世纪最激烈的轰炸行动之一,导致了广泛的都市破坏。在地理动态且持续时间较长的武装冲突中,描述损害需要积极监测。合成孔径雷达(SAR)已经通过双时相方法用于绘制灾害造成的损害图谱,但在持续危机期间的应用则较为有限。我们利用Sentinel-1干涉测量SAR数据,采用长时段相干变化检测(LT-CCD)的方法来追踪2023年以以色列和哈马斯冲突的第一年内每周的破坏趋势。我们在联合国参考数据中检测到92.5%的损害标签,并且误报率极低(仅为1.2%)。我们的方法的时间准确性揭示了战争前三个多月期间北部加沙地区的损害迅速增加,一个临时停火期内的显著损害暂停期,以及随着冲突热点从北向南转移而出现的新一轮破坏激增。在研究结束时,有三分之二(共191,263座)的建筑物被毁或遭到损坏。 鉴于武装冲突地区需要及时的数据来了解损害情况,我们的低成本和低延迟的方法能够使人道主义组织和新闻机构迅速获取损害信息。

URL

https://arxiv.org/abs/2506.14730

PDF

https://arxiv.org/pdf/2506.14730.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot