Paper Reading AI Learner

Convolutional Feature Enhancement and Attention Fusion BiFPN for Ship Detection in SAR Images

2025-06-18 08:14:28
Liangjie Meng, Danxia Li, Jinrong He, Lili Ma, Zhixin Li

Abstract

Synthetic Aperture Radar (SAR) enables submeter-resolution imaging and all-weather monitoring via active microwave and advanced signal processing. Currently, SAR has found extensive applications in critical maritime domains such as ship detection. However, SAR ship detection faces several challenges, including significant scale variations among ships, the presence of small offshore vessels mixed with noise, and complex backgrounds for large nearshore ships. To address these issues, this paper proposes a novel feature enhancement and fusion framework named C-AFBiFPN. C-AFBiFPN constructs a Convolutional Feature Enhancement (CFE) module following the backbone network, aiming to enrich feature representation and enhance the ability to capture and represent local details and contextual information. Furthermore, C-AFBiFPN innovatively integrates BiFormer attention within the fusion strategy of BiFPN, creating the AFBiFPN network. AFBiFPN improves the global modeling capability of cross-scale feature fusion and can adaptively focus on critical feature regions. The experimental results on SAR Ship Detection Dataset (SSDD) indicate that the proposed approach substantially enhances detection accuracy for small targets, robustness against occlusions, and adaptability to multi-scale features.

Abstract (translated)

合成孔径雷达(SAR)通过主动微波和先进信号处理技术实现了亚米级分辨率成像及全天候监测。目前,SAR在诸如船舶检测等关键海洋领域得到了广泛应用。然而,SAR船舶检测面临着若干挑战,包括船型大小不一、海上小型船只混杂以及近岸大型船只的复杂背景环境。为解决这些问题,本文提出了一种名为C-AFBiFPN的新颖特征增强与融合框架。该框架在骨干网络之后构建了卷积特征增强(CFE)模块,旨在丰富特征表示,并提高捕捉和表达局部细节及上下文信息的能力。 此外,C-AFBiFPN创新性地将BiFormer注意力机制整合到了BiFPN的融合策略中,形成了AFBiFPN网络。这种新方法提升了跨尺度特征融合的全局建模能力,并能自适应聚焦于关键特征区域。在SAR Ship Detection Dataset(SSDD)上的实验结果表明,所提出的方案显著提高了对小目标检测精度、遮挡情况下的鲁棒性以及多尺度特征的适应性。

URL

https://arxiv.org/abs/2506.15231

PDF

https://arxiv.org/pdf/2506.15231.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot