Paper Reading AI Learner

Privacy-Preserving Chest X-ray Classification in Latent Space with Homomorphically Encrypted Neural Inference

2025-06-18 08:35:50
Jonghun Kim, Gyeongdeok Jo, Shinyoung Ra, Hyunjin Park

Abstract

Medical imaging data contain sensitive patient information requiring strong privacy protection. Many analytical setups require data to be sent to a server for inference purposes. Homomorphic encryption (HE) provides a solution by allowing computations to be performed on encrypted data without revealing the original information. However, HE inference is computationally expensive, particularly for large images (e.g., chest X-rays). In this study, we propose an HE inference framework for medical images that uses VQGAN to compress images into latent representations, thereby significantly reducing the computational burden while preserving image quality. We approximate the activation functions with lower-degree polynomials to balance the accuracy and efficiency in compliance with HE requirements. We observed that a downsampling factor of eight for compression achieved an optimal balance between performance and computational cost. We further adapted the squeeze and excitation module, which is known to improve traditional CNNs, to enhance the HE framework. Our method was tested on two chest X-ray datasets for multi-label classification tasks using vanilla CNN backbones. Although HE inference remains relatively slow and introduces minor performance differences compared with unencrypted inference, our approach shows strong potential for practical use in medical images

Abstract (translated)

医学影像数据包含敏感的患者信息,需要强有力的隐私保护措施。许多分析设置要求将数据发送到服务器进行推理操作。同态加密(HE)提供了一种解决方案,在不解密的情况下对加密数据执行计算。然而,同态加密推理在计算上非常昂贵,特别是对于大尺寸图像(例如胸部X光片)。在这项研究中,我们提出了一种针对医学影像的基于VQGAN压缩技术的同态加密推理框架,通过将图像压缩为潜在表示来显著减少计算负担同时保持图像质量。我们将激活函数近似为低阶多项式以平衡准确性和效率,并满足同态加密的要求。观察到在压缩时采用8倍下采样因子可以实现性能与计算成本之间的最佳平衡点。我们进一步改进了挤压和激励模块,这一技术被证明能够提升传统卷积神经网络(CNN)的表现力,从而增强我们的HE框架。我们在两个胸部X光片数据集上使用基本的CNN骨干结构进行了多标签分类任务测试。尽管同态加密推理仍然相对缓慢,并且与未加密推理相比引入了较小的性能差异,但我们的方法在医学影像的实际应用中显示出巨大的潜力。

URL

https://arxiv.org/abs/2506.15258

PDF

https://arxiv.org/pdf/2506.15258.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot