Paper Reading AI Learner

Oldies but Goldies: The Potential of Character N-grams for Romanian Texts

2025-06-18 17:28:37
Dana Lupsa, Sanda-Maria Avram

Abstract

This study addresses the problem of authorship attribution for Romanian texts using the ROST corpus, a standard benchmark in the field. We systematically evaluate six machine learning techniques: Support Vector Machine (SVM), Logistic Regression (LR), k-Nearest Neighbors (k-NN), Decision Trees (DT), Random Forests (RF), and Artificial Neural Networks (ANN), employing character n-gram features for classification. Among these, the ANN model achieved the highest performance, including perfect classification in four out of fifteen runs when using 5-gram features. These results demonstrate that lightweight, interpretable character n-gram approaches can deliver state-of-the-art accuracy for Romanian authorship attribution, rivaling more complex methods. Our findings highlight the potential of simple stylometric features in resource, constrained or under-studied language settings.

Abstract (translated)

这项研究解决了使用ROST语料库对罗马尼亚文本进行作者归属的问题,ROST语料库是该领域的标准基准。我们系统地评估了六种机器学习技术:支持向量机(SVM)、逻辑回归(LR)、k-近邻(k-NN)、决策树(DT)、随机森林(RF)和人工神经网络(ANN),采用字符n-gram特征进行分类。在这其中,使用5-gram特征时,ANN模型在十五次运行中的四次达到了完美的分类效果,表现最佳。这些结果表明,在罗马尼亚作者归属问题上,基于轻量级、可解释的字符n-gram方法可以实现最先进的精度,与更复杂的方法相当。我们的研究发现强调了简单风格度量特征在资源有限、约束或较少研究的语言环境中所具有的潜力。

URL

https://arxiv.org/abs/2506.15650

PDF

https://arxiv.org/pdf/2506.15650.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot