Paper Reading AI Learner

Deep 1D-Convnet for accurate Parkinson disease detection from gait

2019-10-25 03:14:54
Imanne El Maachi, Guillaume-Alexandre Bilodeau, Wassim Bouachir

Abstract

Diagnosing Parkinson's disease is a complex task that requires the evaluation of several motor and non-motor symptoms. During diagnosis, gait abnormalities are among the important symptoms that physicians should consider. However, gait evaluation is challenging and relies on the expertise and subjectivity of clinicians. In this context, the use of an intelligent gait analysis algorithm may assist physicians in order to facilitate the diagnosis process. This paper proposes a novel intelligent Parkinson detection system based on deep learning techniques to analyze gait information. We used 1D convolutional neural network (1D-Convnet) to build a Deep Neural Network (DNN) classifier. The proposed model processes 18 1D-signals coming from foot sensors measuring the vertical ground reaction force (VGRF). The first part of the network consists of 18 parallel 1D-Convnet corresponding to system inputs. The second part is a fully connected network that connects the concatenated outputs of the 1D-Convnets to obtain a final classification. We tested our algorithm in Parkinson's detection and in the prediction of the severity of the disease with the Unified Parkinson's Disease Rating Scale (UPDRS). Our experiments demonstrate the high efficiency of the proposed method in the detection of Parkinson disease based on gait data. The proposed algorithm achieved an accuracy of 98.7 %. To our knowledge, this is the state-of-the-start performance in Parkinson's gait recognition. Furthermore, we achieved an accuracy of 85.3 % in Parkinson's severity prediction. To the best of our knowledge, this is the first algorithm to perform a severity prediction based on the UPDRS. Our results show that the model is able to learn intrinsic characteristics from gait data and to generalize to unseen subjects, which could be helpful in a clinical diagnosis.

Abstract (translated)

URL

https://arxiv.org/abs/1910.11509

PDF

https://arxiv.org/pdf/1910.11509.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot