Paper Reading AI Learner

Learning Task-Oriented Grasping from Human Activity Datasets

2019-10-25 12:52:40
Mia Kokic, Danica Kragic, Jeannette Bohg

Abstract

We propose to leverage a real-world, human activity RGB datasets to teach a robot {\em Task-Oriented Grasping} (TOG). On the one hand, RGB-D datasets that contain hands and objects in interaction often lack annotations due to the manual effort in obtaining them. On the other hand, RGB datasets are often annotated with labels that do not provide enough information to infer a 6D robotic grasp pose. However, they contain examples of grasps on a variety of objects for many different tasks. Thereby, they provide a much richer source of supervision than RGB-D datasets. We propose a model that takes as input an RGB image and outputs a hand pose and configuration as well as an object pose and a shape. We follow the insight that jointly estimating hand and object poses increases accuracy compared to estimating these quantities independently of each other. Quantitative experiments show that training an object pose predictor with the hand pose information (and vice versa) is better than training without this information. Given the trained model, we process an RGB dataset to automatically obtain training data for a TOG model. This model takes as input an object point cloud and a task and outputs a suitable region for grasping, given the task. Qualitative experiments show that our model can successfully process a real-world dataset. Experiments with a robot demonstrate that this data allows a robot to learn task-oriented grasping on novel objects.

Abstract (translated)

URL

https://arxiv.org/abs/1910.11669

PDF

https://arxiv.org/pdf/1910.11669.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot