Paper Reading AI Learner

A Review of methods for Textureless Object Recognition

2019-10-31 04:39:30
Frincy Clement, Kirtan Shah, Dhara Pancholi


Textureless object recognition has become a significant task in Computer Vision with the advent of Robotics and its applications in manufacturing sector. It has been very challenging to get good performance because of its lack of discriminative features and reflectance properties. Hence, the approaches used for textured objects cannot be applied for textureless objects. A lot of work has been done in the last 20 years, especially in the recent 5 years after the TLess and other textureless dataset were introduced. In our research, we plan to combine image processing techniques (for feature enhancement) along with deep learning techniques (for object recognition). Here we present an overview of the various existing work in the field of textureless object recognition, which can be broadly classified into View-based, Feature-based and Shape-based. We have also added a review of few of the research papers submitted at the International Conference on Smart Multimedia, 2018. Index terms: Computer Vision, Textureless object detection, Textureless object recognition, Feature-based, Edge detection, Deep Learning

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot