Paper Reading AI Learner

Explaining Away Results in Accurate and Tolerant Template Matching

2019-11-11 10:44:42
M. W. Spratling

Abstract

Recognising and locating image patches or sets of image features is an important task underlying much work in computer vision. Traditionally this has been accomplished using template matching. However, template matching is notoriously brittle in the face of changes in appearance caused by, for example, variations in viewpoint, partial occlusion, and non-rigid deformations. This article tests a method of template matching that is more tolerant to such changes in appearance and that can, therefore, more accurately identify image patches. In traditional template matching the comparison between a template and the image is independent of the other templates. In contrast, the method advocated here takes into account the evidence provided by the image for the template at each location and the full range of alternative explanations represented by the same template at other locations and by other templates. Specifically, the proposed method of template matching is performed using a form of probabilistic inference known as "explaining away". The algorithm used to implement explaining away has previously been used to simulate several neurobiological mechanisms, and been applied to image contour detection and pattern recognition tasks. Here it is applied for the first time to image patch matching, and is shown to produce superior results in comparison to the current state-of-the-art methods.

Abstract (translated)

URL

https://arxiv.org/abs/1911.04169

PDF

https://arxiv.org/pdf/1911.04169.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot