Paper Reading AI Learner

Zero-shot Entity Linking with Dense Entity Retrieval

2019-11-10 01:01:45
Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian Riedel, Luke Zettlemoyer

Abstract

We consider the zero-shot entity-linking challenge where each entity is defined by a short textual description, and the model must read these descriptions together with the mention context to make the final linking decisions. In this setting, retrieving entity candidates can be particularly challenging, since many of the common linking cues such as entity alias tables and link popularity are not available. In this paper, we introduce a simple and effective two stage approach for zero-shot linking, based on fine-tuned BERT architectures. In the first stage, we do retrieval in a dense space defined by a bi-encoder that independently embeds the mention context and the entity descriptions. Each candidate is then examined more carefully with a cross-encoder, that concatenates the mention and entity text. Our approach achieves a nearly 5 point absolute gain on a recently introduced zero-shot entity linking benchmark, driven largely by improvements over previous IR-based candidate retrieval. We also show that it performs well in the non-zero-shot setting, obtaining the state-of-the-art result on TACKBP-2010.

Abstract (translated)

URL

https://arxiv.org/abs/1911.03814

PDF

https://arxiv.org/pdf/1911.03814.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot