Paper Reading AI Learner

Addressing the ID-Matching Challenge in Long Video Captioning

2025-10-08 12:59:21
Zhantao Yang, Huangji Wang, Ruili Feng, Han Zhang, Yuting Hu, Shangwen Zhu, Junyan Li, Yu Liu, Fan Cheng

Abstract

Generating captions for long and complex videos is both critical and challenging, with significant implications for the growing fields of text-to-video generation and multi-modal understanding. One key challenge in long video captioning is accurately recognizing the same individuals who appear in different frames, which we refer to as the ID-Matching problem. Few prior works have focused on this important issue. Those that have, usually suffer from limited generalization and depend on point-wise matching, which limits their overall effectiveness. In this paper, unlike previous approaches, we build upon LVLMs to leverage their powerful priors. We aim to unlock the inherent ID-Matching capabilities within LVLMs themselves to enhance the ID-Matching performance of captions. Specifically, we first introduce a new benchmark for assessing the ID-Matching capabilities of video captions. Using this benchmark, we investigate LVLMs containing GPT-4o, revealing key insights that the performance of ID-Matching can be improved through two methods: 1) enhancing the usage of image information and 2) increasing the quantity of information of individual descriptions. Based on these insights, we propose a novel video captioning method called Recognizing Identities for Captioning Effectively (RICE). Extensive experiments including assessments of caption quality and ID-Matching performance, demonstrate the superiority of our approach. Notably, when implemented on GPT-4o, our RICE improves the precision of ID-Matching from 50% to 90% and improves the recall of ID-Matching from 15% to 80% compared to baseline. RICE makes it possible to continuously track different individuals in the captions of long videos.

Abstract (translated)

为长而复杂的视频生成字幕既是关键又是挑战,对于正在增长的文本到视频生成和多模态理解领域具有重要意义。在长视频字幕生成中,一个关键挑战在于准确识别出现在不同帧中的同一人物,我们称之为ID-Matching问题。此前很少有研究关注这个问题,那些试图解决此问题的研究通常面临泛化能力有限的问题,并且依赖于点对点匹配方法,这限制了其整体效果。 本文与以往的方法有所不同,我们在LVLMs(大型视觉语言模型)的基础上进行构建,以利用这些模型的强大先验知识。我们的目标是解锁LVLM内部的ID-Matching潜力,从而增强字幕中的ID-Matching性能。具体来说,我们首先引入了一个新基准用于评估视频字幕中ID-Matching能力,并通过此基准对包含GPT-4o的LVLM进行了调查,揭示了两个关键见解:1)增强图像信息的使用;2)增加个人描述的信息量可以提高ID-Matching的表现。基于这些见解,我们提出了一种新的视频字幕生成方法——有效识别身份以改进字幕(Recognizing Identities for Captioning Effectively, RICE)。大量的实验,包括对字幕质量和ID-Matching性能的评估,证明了我们的方法优于现有技术。 特别地,在应用到GPT-4o时,我们的RICE使ID-Matching的精度从50%提高到了90%,并且将召回率从15%提升至80%,相较于基准方法。这使得在长视频字幕中连续追踪不同的人物成为可能。

URL

https://arxiv.org/abs/2510.06973

PDF

https://arxiv.org/pdf/2510.06973.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot