Paper Reading AI Learner

Efficient Prompt Optimisation for Legal Text Classification with Proxy Prompt Evaluator

2025-10-09 17:49:53
Hyunji Lee, Kevin Chenhao Li, Matthias Grabmair, Shanshan Xu

Abstract

Prompt optimization aims to systematically refine prompts to enhance a language model's performance on specific tasks. Fairness detection in Terms of Service (ToS) clauses is a challenging legal NLP task that demands carefully crafted prompts to ensure reliable results. However, existing prompt optimization methods are often computationally expensive due to inefficient search strategies and costly prompt candidate scoring. In this paper, we propose a framework that combines Monte Carlo Tree Search (MCTS) with a proxy prompt evaluator to more effectively explore the prompt space while reducing evaluation costs. Experiments demonstrate that our approach achieves higher classification accuracy and efficiency than baseline methods under a constrained computation budget.

Abstract (translated)

提示优化的目标是系统地改进提示,以增强语言模型在特定任务上的表现。服务条款(ToS)中的公平性检测是一项具有挑战性的法律自然语言处理(NLP)任务,需要精心设计的提示来确保可靠的结果。然而,现有的提示优化方法通常由于搜索策略低效和候选提示评分成本高而计算开销大。在这篇论文中,我们提出了一种结合蒙特卡洛树搜索(MCTS)与代理提示评估器的框架,旨在更有效地探索提示空间同时减少评价成本。实验表明,在给定的计算预算下,我们的方法比基线方法实现了更高的分类准确率和效率。

URL

https://arxiv.org/abs/2510.08524

PDF

https://arxiv.org/pdf/2510.08524.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot